高三数学复习知识点题型总结7篇
2023-07-13 02:35:47华夏高考网篇 1
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n?1;非空真子集的数为2^n?2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
1、对于函数f(x),如果对于定义域内任意一个x,都有f(?x)=?f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(?x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b?f(a?x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a?x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则?x也一定是定义域内的一个自变量(即定义域关于原点对称)。
篇 2
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别.
6.求解与函数有关的问题易忽略定义域优先的原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.
(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R。
篇 3
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
项数有穷数列项数有限
无穷数列项数无限
项与项间的大小关系递增数列an+1>an其中n∈N
减数列an+1<an< p="">
常数列an+1=an
(3)数列的通项公式:
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
2.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.
3.对数列概念的理解
(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.
4.数列的函数特征
数列是一个定义域为正整数集N_或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_.
篇 4
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
_译法:求动点轨迹方程的一般步骤
①建系??建立适当的坐标系;
②设点??设轨迹上的任一点P(x,y);
③列式??列出动点p所满足的关系式;
④代换??依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明??证明所求方程即为符合条件的动点轨迹方程。
篇 5
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的`四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
篇分享5篇
篇 6
一个推导
利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_,则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an?an+2(n∈N_,则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c?qn(c,q均是不为0的常数,n∈N_,则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
篇 7
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2?a?的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4?a?的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11、处理二次函数的问题勿忘数形结合
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性
利用一次函数在区间上的保号性可解决求一类参数的范围问题;
13、恒成立问题的处理方法
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解;
a(1)=a,a(n)为公差为r的等差数列
通项公式:
a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:
S(n)=a(1)+a(2)+、、、+a(n)
=a+(a+r)+、、、+[a+(n-1)r]
=na+r[1+2+、、、+(n-1)]
=na+n(n-1)r/2
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列
(1).高考生高三数学知识点必看梳理三篇
1、高考数学重要知识点整理:动点轨迹方程一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。⒉定义法:如果能够确定...查看更多
(2).高考高三函数数学知识点归纳分析大全
一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(...查看更多
通项公式:
a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、
可用归纳法证明等比数列的通项公式。
求和公式:
S(n)=a(1)+a(2)+、、、+a(n)
=a+ar+、、、+ar^(n-1)
=a[1+r+、、、+r^(n-1)]
r不等于1时,
S(n)=a[1-r^n]/[1-r]
r=1时,
S(n)=na、
同样,可用归纳法证明求和公式。
相关推荐
- 高考生高三数学知识点必看梳理三篇2023-07-13 02:34:09
- 人教版高一化学必修一知识点梳理总结三篇2023-06-30 04:16:33
- 高一化学必修一知识点归纳总结 学好高中化学的窍门2023-06-30 04:15:34
- 天津高考投档分数线公布一览表最新2024-07-17 16:58:16
- 上海高考投档分数线公布一览表最新2024-07-17 16:56:33
- 北京高考投档分数线公布一览表最新2024-07-17 16:54:53
- 浙江高考投档分数线公布一览表最新2024-07-17 16:52:54
- 山东高考投档分数线公布一览表最新2024-07-17 16:51:12
- 高考生高三数学知识点必看梳理三篇2023-07-13 02:34:09
- 中小学观看爱国主义题材的电影观后感七篇2023-07-13 02:31:56
- 小学三年级爱国主义电影观后感4篇2023-07-13 02:30:13
最新发布
图文推荐
云南高考投档分数线公布一览表
2024-07-17 17:10:42山西高考投档分数线公布一览表
2024-07-17 17:08:57宁夏高考投档分数线公布一览表
2024-07-17 17:06:59陕西高考投档分数线公布一览表
2024-07-17 17:04:54河南高考投档分数线公布一览表
2024-07-17 17:02:24四川高考投档分数线公布一览表
2024-07-17 17:00:02天津高考投档分数线公布一览表
2024-07-17 16:58:16上海高考投档分数线公布一览表
2024-07-17 16:56:33